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ABSTRACT 

This article presents an implementation of periodic boundary conditions (PBC) for 
Dislocation Dynamics (DD) simulations in three dimensions (3D). We discuss fundamental 
aspects of PBC development, including preservation of translational invariance and line 
connectivity, the choice of initial configurations compatible with PBC and a consistent treatment 
of image stress. On the practical side, our approach reduces to manageable proportions the 
computational burden of updating the long-range elastic interactions among dislocation 
segments. The timing data confirms feasibility and practicality of PBC for large-scale DD 
simulations in 3D. 

INTRODUCTION 

Treatment of boundary conditions is an important element of Dislocation Dynamics (DD) 
methodology. There are two distinct classes of DD simulations that necessitate different 
approaches to boundary conditions. When the simulation volume is close to an internal or 
external interface (surface, crack, grain or phase boundary, etc.), it is necessary to account for 
stress variations associated with the interface. In other cases, dislocation behavior in the bulk 
single crystal, far removed from any interfaces, is of interest. The first case is generally difficult 
requiring the use of sophisticated numerical methods [ 1,2] to calculate the elastic (image) stress 
associated with the interfaces. In the second case, the material volume can be regarded as a 
small part of an infinitely large single crystal justifying the use of the relatively simple analytical 
solutions of the continuous theory of dislocations obtained for the infinite elastically 
homogeneous solid [3]. 

Understandably, in the early stages of development DD simulations focused on the simpler 
case of bulk single crystals. Some 50 years ago von Karmann [4] suggested a trick by which a 
small representative volume of material is replicated by periodic continuation to make up the 
infinite crystal and to preserve its translational invariance. Since then, this trick has been 
routinely employed in computer simulations of solids. In 2D, where dislocations appear as point 
objects carrying tensorial (Burgers) charges, periodic boundary conditions (PBC) have been 
successfully implemented [5,6]. However in 3D, the models used for DD simulations in the bulk 
remain inconsistent with the absence of material interfaces and translational invariance of the 
infinite crystal. In fact, most simulations performed so far employ free boundaries. To simplify 
the treatment, the boundaries are allowed to exist only in the sense that they absorb dislocations 
that happen to approach the boundary, whereas the image stresses induced by the free surfaces 
are simply ignored [7 ] .  In order to mitigate such undesirable effects, a smaller spherical volume 
in the center of the simulation box is sometimes used to control the loading conditions and to 
monitor dislocation behavior [2]. Unfortunately, the spurious dislocation loss can not be fully 
prevented even using such an embedded sphere approach. Furthermore, the remainder of the 



simulation volume (- 80%) is wasted because its only function is to buffer the central sphere 
from the free surfaces. Mirror reflection approach developed in [8] addresses the problem of 
image stress but the spurious loss of dislocation to the boundaries remains an issue. Recently, 
free surface boundary conditions have been augmented with a procedure that monitors the rate of 
dislocation loss to the boundaries and re-introduces dislocations at random, to counter the loss 
[9].  Although these modifications offer significant improvement over the use of plain free 
surface boundary conditions, the fact remains: all of them contain some sort of boundaries thus 
violating the translation invariance and, except for [8], ignore or distort the image stress fields 
associated with the boundaries. 

At a first glance, an extension of PBC to 3D appears very appealing since, by their very 
nature, PBC preserve translational invariance and balance dislocation fluxes in and out of the 
box. Countering such warm feelings for the von Karmann’s trick are the warnings against the 
use of PBC in 3D given in the earlier papers on the DD methods [7, 101. Subsequent 
publications reinforce the early doubts suggesting that line connectivity can not be preserved in 
3D PBC [2, 8, 111. This contribution is intended to dispel the doubts and to clear the PBC for 
use in DD simulations in 3D. In the following we show that consistent application of PBC in 
three dimensions is not exactly trivial, yet its potential advantages should convince those in 
doubt that PBC is a good alternative to the other types of boundary conditions currently in use. 

NUMERICAL IMPLEMENTATION 

In this section we consider three aspects of periodic boundary conditions relevant for practical 
numerical implementation: (1) line connectivity, (2) initial dislocation arrangements compatible 
with PBC and (3) treatment of image stress. 

Line Connectivity 

Fig. 1 Closed loops in PBC: in (a) the primary 
loop (dotted) is folded in the primary box (solid) 
whereas in (b) the same result is obtained by 
periodic loop replication. 

That there is really no problem maintaining line 
connectivity in PBC is illustrated in Fig. 1 that 
shows a closed loop of arbitrary shape partly 
contained in the primary box. The box is 
periodically replicated in 2D (only a few relevant 
replicas are shown for clarity). Periodic replication 
of the loop demands that, every time the line 
crosses the imagined boundary of the primary box 
or any of its replicas, another line enters the 
primary box at the periodically equivalent position 
on an appropriate face. By tracing the primary loop 
along its contour direction, one can “fold” the entire 
line in the primary box. To complete the periodic 
continuation, such folded lines are replicated in all 

other boxes as well. Alternatively, the same periodic arrangement of loops and boxes can be 
obtained without ever tracing and folding the primary loop, by simply replicating the whole loop 
with the same periodicity vectors as used for replicating the primary box (Fig. l(b)). Although 
the illustration is 2D, exactly the same folding and replication procedures apply in 3D. 



The fact that folding and replication are equivalent can be used constructively in a numerical 
implementation. In particular, instead of tracing the events of boundary crossing within the 
primary box, the algorithm can focus on the unfolded primary loop spanning many periodic 
boxes but perform the arithmetic manipulations with the vectors moduEo periodicity vectors. 
From this point of view, there are no boundaries to deal with in the periodic boundary conditions, 
since the origin of periodic replication can be arbitrarily shifted with respect to the primary loop. 
Translational periodicity of PBC is not only physically realistic but also numerically convenient. 

That line continuity is maintained in DD simulations is proven by simple induction: starting 
from an initial configuration such as shown in Fig. 1, line continuity is preserved in all 
subsequent topological transformations, e.g. recombination, multiplication, junction reactions, 
etc. 

Initial conditions 

One likely reason for the persistent prejudice against using PBC in 3D is not appreciating the 
fact that, when it comes to translational periodicity, not all dislocation arrangements are created 
equal. In fact, general dislocation configurations in the primary box can not be periodically 
continued in all directions without breaking the lines, however similar they may look to the one 
shown in Fig. 1. The latter is compatible with PBC but, having been constructed by folding a 
closed loop into the primary box, is by no means arbitrary. In addition to closed loops, infinite 
dipoles can be used to generate PBC-compatible initial configurations'. In this case, it is 
necessary to make sure that each line of the dipole eventually re-enters itself so that its total span 
(the vector connecting its two ends) is a multiple of the periodicity vectors. We have developed a 
simple algorithm of self-correcting random walk by which a line spanning a given multiple of 
the periodicity vectors can be generated using a sequence of random numbers. Although the 
class of PBC-compatible initial configurations may appear rather narrow, this is not a serious 
constraint for large-scale DD simulations. 

zero integral over the primary box of the so-called dislocation density or Nye's tensor [12] 
It is interesting to note that all PBC-compatible dislocation configurations correspond to a net 

where b is the Burgers vector, t is the line tangent vector, ds is an element of arc length along the 
dislocation line, and L is the total length of dislocation lines within box volume V. For our 
purposes the integral is conveniently reduced to a simpler form [ 131 

1 a.. = - C b . ( x ?  - x : > = o  , 
9 V l J  J 

where x- and x+ are the positions of entry and exit points of the line segments and the sum 
includes all dislocations inside the box. 

Although the condition of zero Nye's tensor integral is realized for all initial configurations 
that are truly compatible with PBC, the compatibility requirement can be somewhat relaxed in 
practical DD simulations. For example it is possible, starting with a PBC-compatible 
configuration, add one or several infinite dislocations that will introduce a small amount of 
unbalanced dislocation density in the box. Although physically this would introduce a non-zero 
net lattice curvature that is impossible to accommodate in the infinite translationally-invariant 

In a sense, an infinite dipole can be viewed as a loop closed through infinity. 1 



crystal, this curvature can be neglected for as long as Lbp c< I ,  where p i s  the density of 
geometrically-necessary dislocations (GND) added to the box and L is the box size. For a typical 
box size of 10 p and the GND density p =10l2 m-2, the dimensionless ratio above is of the order 
of Whichever initial arrangement of lines is considered, the use of PBC will ensure that the 
volume integral of Nye’s tensor is conserved in the course of DD simulations. 

Treatment of image stress 

Fully consistent application of PBC requires that additional stress associated with the periodic 
images of dislocation be accounted for. This is the most involved part of the whole 
implementation. In DD, the lion’s share of computations goes to calculations of elastic 
interactions between dislocation segments. The unit element of such calculations is the 

evaluation of stress produced at a given material point 
P by a dislocation segment centered at position S. 
Using the analytical formulae developed in the 
continuum theory [3, 141, such a calculation takes a 
few hundred arithmetic operations to obtain all six 
components of stress from a general dislocation 
segment of finite length. In PBC, the computational 
burden increases many-fold because stress from the 
periodic images of the primary segment has to be 
evaluated. Considering that the overall effort already 
scales as O(N2), where N is the number of dislocation 
segments, the brute force treatment of image stress in 
PBC becomes prohibitive. Earlier, one of us found a 
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Fig. 2 Periodic lattice of image segments. 

practical solution in a similar situation, for computationally expedient evaluation of periodic 
corrections to the elastic Green’s function in 2D 115). The idea was to pre-tabulate the 
correction stress on a regular grid within the computational volume and then use these grid 
values for fast interpolation. The interpolation itself is based on the minimum image convention 
which dictates that the total stress due to a given segment and all of its periodic images, is 
associated with the replica of the segment that is nearest to the field point (Fig. 2) .  Practically, 
the calculation requires that the box is centered on the field point, and the look-up procedure 
goes over all segments, primary or replicas, that fall inside this box. 

Extension of this idea to DD simulations in 3D encounters considerable but manageable 
difficulties. The most obvious of them is the high dimensionality of the required look-up tables. 
To improve the situation we created the tables only for point-like dislocation segments, Le. such 
segments whose length is considerably smaller than their distance to the field point. Compared 
to the case of straight segments of finite length, the use of point-like segments reduces the 
dimensionality of the tables from four to three. Still, it appears one needs to pre-calculate 54 
image correction tables, one for each of the six components of stress generated by nine 
components of the tensorial charge Zb 0 t 1 (here 1 is the length of the point-like segment). Using 
cubic periodic boxes and taking advantage of the cubic symmetry, the number of independent 
tables can be reduced from 54 to eight. The same symmetry allows reduction of the amount of 
computations by 48 times, by considering only the grid points in the irreducible zone of the cube. 
This also reduces the amount of memory required to store the tables, if this is a limiting factor. 
For a given accuracy of interpolation, the number of grid points can be reduced by making the 



tabulated functions as smooth as possible inside the cube. Since the stress field of the nearest 
image of the segment diverges as 1/12 at the origin, we exclude the nearest image from the 
correction tables and evaluate its contribution analytically instead. This eliminates the 
singularity since all the replicas other than minimum images lie outside the box by definition. 

The most serious problem we had to face was conditional convergence of the lattice 
(Madelung) sums that need to be evaluated for every entry of the stress correction tables. In a 
forthcoming publication we present a thorough discussion of this important mathematical aspect 
of the continuum theory of dislocations [16]. Here we only briefly recount that the nai‘ve lattice 
summation of the stress terms associated with the primary and replica segments is convergent, 
but the end result depends on the order of summation. In general, such conditional sum gives rise 
to an arbitrary average stress in the simulation cell which will cause problems for DD 
simulations. The physically meaningful part of the Madelung sum is therefore the stress field 
variation over the simulation cell, which converges absolutely and thus does not depend on the 
order of summation. We have implemented an effective numerical procedure MadSurn for 
subtracting the spurious parts of the lattice sums and used the remaining stress field variations as 
the entries for the stress correction tables. 

~ ~ ~~~~ 

Zero-value iso-surfaces 
~~ 

of the 

Fig. 3 is an example of one such correction 
function tabulated on a cubic grid 32 x 32 x 32 
in the unit cube. Several features of this 
function are noteworthy. First, the displayed 
function retains periodicity of PBC and the 
symmetry of the cube. Second, except for 
several symmetry lines, the function is non- 
zero on the cube faces. This observation calls 
in question the use of a cut-off distance for 
reducing the cost of computing the interactions 
between dislocation segments in DD 
simulations in 3D. Third, the correction 
function is zero in the center of the cube, 

cube size) no correction is needed. In the 
context of large-scale DD simulations, elastic 

interactions between the segments beyond certain range are usually evaluated using the multipole 
expansion techniques. That the correction functions are zero around the cube center, suggests a 
procedure in which only the multipole terms are corrected, whereas interactions between the 
segments at a shorter range require no correction at all. Comparison of the computational cost 
among the different ways of treating the interaction stress reveals that numerical interpolation of 
the image-corrected stress takes some four times longer than the analytical evaluation of stress 
from the same number of dislocation segments. However, because the number of multipole 
momenta that have to be corrected is generally smaller than the number of segments demanding 
“personal attention”, the total amount of time spent on analytical (uncorrected) and numerical 
(image-corrected) stress evaluation, are comparable. 

correction term for 0 1 3 ,  interpolated in the unit cube 
as a function of segment position. Note zero-value 
region near the origin. 

indicating that within Some radius (-0.2 of the 

SUMMARY 



In this short contribution we intended to show that there is nothing particularly nasty about 
PBC as the boundary conditions for DD simulations in 3D. On the other hand, with the obvious 
advantage of retaining translational invariance and effectively eliminating the boundaries, PBC 
are well positioned for 3D simulations of single crystal plasticity in the bulk. However there is 
no magic and the PBC in no case make the system infinite: the size of the system is still defined 
by its primary simulation box. As always, one has to be vigilant and watch for the artifacts 
associated with the small size. In particular, any length scale emerging in the simulations that 
appears comparable to the box size, should be treated with suspicion. Interaction of dislocations 
with their own images may be a cause of spurious effects, e.g. artificially enhanced dislocation 
recombination or formation of strong dipoles immobilizing the dislocations. Although various 
fixes to alleviate such undesirable behaviors can be devised, in our view there is only one real 
solution. It is to have the system so large that dislocations would screen each other from 
interactions with their own images. An alternative way to make the same argument is to consider 
that, in a model containing large number of dislocations, say 3,000 of them, a given dislocation 
line will experience a few thousand collisions with the other lines, on every passage through the 
box. In most cases, such collisions will modify the dislocation trajectories in various significant 
ways. Consequently, if and when after so many interactions a dislocation happens to approach 
its own image, by then it will have forgotten its initial identity and will perceive its image as just 
another dislocation of the same Burgers vector. 
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